\(B\) is a point on circle with centre \(O\). \(BD \perp AC\) and \(D\) is the midpoint of radius \(OC\).
If the diameter of the circle is \(\text{24}\text{ cm}\), find \(BD\).
Leave answer in simplified surd form.

We think you are located in United States. Is this correct?
We use this information to present the correct curriculum and to personalise content to better meet the needs of our users.
Previous
8.5 Similarity
|
Next
8.7 Summary
|
Many different methods of proving the theorem of Pythagoras have been formulated over the years. Similarity of triangles is one method that provides a neat proof of this important theorem.
The square on the hypotenuse of a right-angled triangle is equal to the sum of the squares on the other two sides.
(Reason: Pythagoras or \(\text{right-angled } \triangle \text{s}\))
\(\triangle ABC\) with \(\hat{A}=\text{90}°\)
\(B{C}^{2}=A{B}^{2}+A{C}^{2}\)
Construction: draw \(AD \perp BC\).
\[\begin{array}{rll} \hat{C} + \hat{A}_{2} & = \text{90}° & \text{(}\angle \text{s}\text{ of }\triangle CAD \text{)} \\ \hat{A}_{1} + \hat{A}_{2} & = \text{90}° & \text{(given)} \\ \therefore \hat{A}_{1} & = \hat{C} & \\ & & \\ \hat{A}_{1} + \hat{B} & = \text{90}° & \text{(}\angle \text{s}\text{ of }\triangle ABD \text{)} \\ \therefore \hat{B} & = \hat{A}_{2} & \\ & & \\ \hat{D}_{1} & = \hat{D}_{2}= \hat{A} = \text{90}° & \text{(construction)} \\ & & \\ \therefore \triangle ABD \enspace & ||| \enspace \triangle CBA \enspace ||| \enspace \triangle CAD &\text{(AAA)} \\ & & \\ \therefore \frac{AB}{BC}&=\frac{BD}{AB} & (\triangle ABD \enspace ||| \enspace \triangle CBA ) \\ & & \\ AB^{2} &= BD \times BC & \\ & & \\ \text{Similarly } \frac{AC}{CB}&=\frac{DC}{AC} & (\triangle ABD \enspace ||| \enspace \triangle CBA ) \\ & & \\ AC^{2} &= CB \times DC &\\ & & \\ \therefore AC^{2} + AB^{2} &= (BD \times BC) + (CB \times DC ) &\\ &= BC(BD + DC ) & \\ &= BC(BC ) & \\ &= BC^{2}& \\ & & \\ \therefore BC^{2} &= AC^{2} + AB^{2} & \\ \end{array}\]Converse: theorem of Pythagoras
If the square of one side of a triangle is equal to the sum of the squares of the other two sides of the triangle, then the angle included by these two sides is a right angle.
In \(\triangle PQR\), \(P\hat{Q}R = \text{90}°\) and \(QT \perp PR\). If \(PQ = \text{7}\text{ cm}\) and \(QT = 3\sqrt{5} \enspace \text{cm}\), determine \(PR\) and \(QR\) (correct to the nearest integer).
\(PR = \text{25}\text{ cm}\) and \(QR = \text{24}\text{ cm}\)
For any right-angled \(\triangle MNP\), if \(MQ\) is drawn perpendicular to \(NP\), then:
\(B\) is a point on circle with centre \(O\). \(BD \perp AC\) and \(D\) is the midpoint of radius \(OC\).
If the diameter of the circle is \(\text{24}\text{ cm}\), find \(BD\).
Leave answer in simplified surd form.
In \(\triangle PQR\), \(RQ \perp QP\) and \(QT \perp RP\). \(PQ = 2\) units, \(QR = b\) units, \(RT = 3\) units and \(TP = a\) units. Determine \(a\) and \(b\), giving reasons.
Chord \(AQ\) of circle with centre \(O\) cuts \(BC\) at right angles at point \(P\).
Why is \(\triangle ABP \enspace ||| \enspace \triangle CBA\)?
In \(\triangle ABP\) and \(\triangle CBA\):
\[\begin{array}{rll} B\hat{P}A&= B\hat{A}C =\text{90}° & (\text{given}) \\ \hat{B}&= \hat{B} & (\text{common } \angle) \\ \therefore \triangle ABP& \enspace ||| \enspace \triangle CBA & (\text{AAA}) \end{array}\]If \(AB = \sqrt{6}\) units and \(PO = 2\) units, calculate the radius of the circle.
In \(\triangle ABP\):
\[\begin{array}{rll} AP^{2} &= BA^{2} - BP^{2} & (\text{Pythagoras}) \\ BP &= BO - PO & \\ &= r - 2 & (BO = r, \text{ given } PO = 2) \\ AP^{2} &= \left( \sqrt{6} \right)^{2} - (r-2)^{2} & \\ &= 6 - (r-2)^{2} & \\ & & \\ AP^{2} &= BP.PC & (B\hat{A}C = \text{90}°, AP \perp BC) \\ &= (r-2).PC & \\ \text{And } PC &= PO + OC & \\ &= 2 + r & \\ \therefore AP^{2} &= (r-2)(2 + r) & \end{array}\] \[\begin{array}{rll} 6 - (r-2)^{2} &= (r-2)(2 + r) & \\ 6 - r^{2} + 4r - 4 &= r^{2} - 4 & \\ 2r^{2} - 4r -6 &= 0 & \\ r^{2} - 2r - 3 &= 0 & \\ (r-3)(r+1) &= 0 & \\ r = 3 \text{ or } r &= -1 & \\ \therefore r &= \text{3}\text{ units} & \\ \end{array}\]In the diagram below, \(XZ\) and \(WZ\) are tangents to the circle with centre \(O\) and \(X\hat{Y}Z = \text{90}°\).
Show that \(XY^{2} = OY \cdot YZ\).
Prove that \(\frac{OY}{YZ} = \frac{OW^{2}}{WZ^{2}}\).
Previous
8.5 Similarity
|
Table of Contents |
Next
8.7 Summary
|