Draw a sketch:

We think you are located in United States. Is this correct?
We use this information to present the correct curriculum and to personalise content to better meet the needs of our users.
Previous
4.2 Compound angle identities
|
Next
4.4 Solving equations
|
We have shown that \(\sin\left(\alpha +\beta \right)=\sin\alpha\cos \beta +\cos\alpha\sin \beta\). If we let \(\alpha =\beta\), then we can write the formula as:
\begin{align*} \sin \left(2\alpha \right) &= \sin\left(\alpha +\alpha \right) \\ & = \sin \alpha\cos \alpha +\cos\alpha\sin \alpha \\ \therefore \sin 2\alpha & = 2\sin\alpha\cos \alpha \end{align*}Similarly, we know that \(\cos\left(\alpha +\beta \right)=\cos\alpha\cos \beta -\sin\alpha\sin \beta\). If we let \(\alpha =\beta\), then we have:
\begin{align*} \cos \left(2\alpha \right) &=\cos\left(\alpha +\alpha \right) \\ & = \cos \alpha\cos \alpha -\sin\alpha\sin \alpha \\ \therefore \cos 2\alpha & = \cos^{2}\alpha -\sin^{2}\alpha \end{align*}Using the square identity, \(\sin^{2} \alpha + \cos^{2}\alpha = 1\), we can also derive the following formulae:
\begin{align*} \cos 2\alpha & = \cos^{2}\alpha -\sin^{2}\alpha \\ & = \left( 1 - \sin^{2}\alpha \right) - \sin^{2}\alpha \\ \therefore \cos 2\alpha & = 1 - 2 \sin^{2}\alpha \end{align*}And
\begin{align*} \cos 2\alpha & = \cos^{2}\alpha -\sin^{2}\alpha \\ & = \cos^{2}\alpha - \left( 1 - \cos^{2}\alpha \right) \\ & = \cos^{2}\alpha - 1 + \cos^{2}\alpha \\ \therefore \cos 2\alpha & = 2 \cos^{2}\alpha - 1 \end{align*}Double angle formulae
If \(\alpha\) is an acute angle and \(\sin \alpha = \text{0,6}\), determine the value of \(\sin 2 \alpha\) without using a calculator.
We convert \(\text{0,6}\) to a fraction so that we can use the ratio to represent the sides of a triangle.
\begin{align*} \sin \alpha &= \text{0,6} \\ &= \frac{6}{10} \end{align*}Check the answer using a calculator:
\begin{align*} \sin \alpha &= \text{0,6} \\ \therefore \alpha &\approx \text{36,87} ° \\ 2 \alpha &\approx \text{73,74} ° \\ \therefore \sin \left( \text{73,74} ° \right) &\approx \text{0,96} \end{align*}Prove that \(\frac{\sin\theta +\sin2\theta }{1 + \cos\theta +\cos2\theta } = \tan\theta\).
For which values of \(\theta\) is the identity not valid?
The right-hand side (RHS) of the identity cannot be simplified, so we simplify the left-hand side (LHS). We also notice that the trigonometric function on the RHS does not have a \(2\theta\) dependence, therefore we will need to use the double angle formulae to simplify \(\sin2\theta\) and \(\cos2\theta\) on the LHS.
We know that \(\tan \theta\) is undefined for \(\theta = \text{90} ° + k \cdot \text{180} °, k \in \mathbb{Z}\).
Note that division by zero on the LHS is not allowed, so the identity will also be undefined for:
\begin{align*} 1 + \cos\theta +\cos2\theta & = 0 \\ \cos\theta \left( 1 + 2\cos\theta \right) & = 0 \\ \therefore \cos \theta = 0 &\text{ or } 1 + 2\cos\theta = 0 \\ & \\ \text{For } \cos \theta = 0, \quad \theta &= \text{90} ° + k \cdot \text{180} ° \\ & \\ \text{For } 1 + 2 \cos \theta = 0, \quad \cos \theta &= - \frac{1}{2} \\ \therefore \theta &= \text{120} ° + k \cdot \text{360} ° \\ \text{or } \theta &= \text{240} ° + k \cdot \text{360} ° \end{align*}for \(k \in \mathbb{Z}\).
Given \(5 \cos \theta = -3\) and \(\theta < \text{180} °\). Determine the value of the following, without a calculator:
Draw a sketch:
Given \(\cos \text{40} ° = t\), determine (without a calculator):
Restrictions:
\begin{align*} \sin 2 A &\ne 0 \\ \therefore 2A &\ne \text{0} ° + k \cdot \text{180} ° \\ \therefore A &\ne \text{0} ° + k \cdot \text{90} °, \quad k \in \mathbb{Z} \\ \text{And } \tan 2 A &\ne 0 \\ \therefore 2A &\ne \text{90} ° + k \cdot \text{180} ° \\ \therefore A &\ne \text{45} ° + k \cdot \text{90} °, \quad k \in \mathbb{Z} \\ \text{And for } \tan A &: \\ A &\ne \text{90} ° + k \cdot \text{180} °, \quad k \in \mathbb{Z} \end{align*}Without using a calculator, find the value of the following:
Check the answer using a calculator.
Check the answer using a calculator.
Restrictions:
\begin{align*} \cos 2 x &\ne 0 \\ \therefore 2x &\ne \text{90} ° + k \cdot \text{180} ° \\ \therefore x &\ne \text{45} ° + k \cdot \text{90} °, \quad k \in \mathbb{Z} \\ \text{And } \cos x &\ne \sin x \\ \therefore x &\ne \text{45} ° + k \cdot \text{180} °, \quad k \in \mathbb{Z} \\ \text{And for } & \tan 2 x \\ \therefore 2x &\ne \text{90} ° + k \cdot \text{180} ° \\ \therefore x &\ne \text{45} ° + k \cdot \text{90} °, \quad k \in \mathbb{Z} \end{align*}Consider the denominator on the LHS:
\begin{align*} \cos 2x &= \cos 2 \left( \text{45} ° \right) \\ &= \cos \text{90} ° \\ &= 0 \end{align*}Consider the denominator on the RHS:
\begin{align*} \cos \text{45} ° &= \sin \text{45} ° \\ \therefore \cos \text{45} ° - \sin \text{45} ° &= 0 \end{align*}Therefore, the identity will be undefined because division by zero is not permitted.
Previous
4.2 Compound angle identities
|
Table of Contents |
Next
4.4 Solving equations
|