\(\tan \text{150}\text{°}\sin \text{30}\text{°} - \cos \text{210}\text{°}\)
6.3 Reduction formula
Previous
6.2 Trigonometric identities
|
Next
6.4 Trigonometric equations
|
6.3 Reduction formula (EMBHJ)
Any trigonometric function whose argument is 90°±θ; 180°±θ and 360°±θ can be written simply in terms of θ.
Deriving reduction formulae (EMBHK)
Reduction formulae for function values of 180°±θ
-
Function values of 180°−θ
In the figure P(√3;1) and P′ lie on the circle with radius 2. OP makes an angle θ=30° with the x-axis.
-
If points P and P′ are symmetrical about the y-axis, determine the coordinates of P′.
-
Write down values for sinθ, cosθ and tanθ.
-
Use the coordinates for P′ to determine sin(180°−θ), cos(180°−θ), tan(180°−θ).
-
From your results determine a relationship between the trigonometric function values of (180°−θ) and θ.
-
-
Function values of 180°+θ
In the figure P(√3;1) and P′ lie on the circle with radius 2. OP makes an angle θ=30° with the x-axis.
-
If points P and P′ are symmetrical about the origin (the two points are symmetrical about both the x-axis and the y-axis), determine the coordinates of P′.
-
Use the coordinates for P′ to determine sin(180°+θ), cos(180°+θ) and tan(180°+θ).
-
From your results determine a relationship between the trigonometric function values of (180°+θ) and θ.
-
-
Complete the following reduction formulae:
- sin(180°−θ)=……
- cos(180°−θ)=……
- tan(180°−θ)=……
- sin(180°+θ)=……
- cos(180°+θ)=……
- tan(180°+θ)=……
Worked example 7: Reduction formulae for function values of 180°±θ
Write the following as a single trigonometric ratio:
sin163°cos197°+tan17°+cos(180°−θ)×tan(180°+θ)
Use reduction formulae to write the trigonometric function values in terms of acute angles and θ
=sin(180°−17°)cos(180°+17°)+tan17°+(−cosθ)×tanθ
Simplify
=sin17°−cos17°+tan17°−cosθ×sinθcosθ=−tan17°+tan17°−sinθ=−sinθ
Reduction formulae for function values of \(\text{180}\text{°} \pm \theta\)
Determine the value of the following expressions without using a calculator:
\((1 + \cos \text{120}\text{°})(1 - \sin^2 \text{240}\text{°})\)
\(\cos^2 \text{140}\text{°} + \sin^2 \text{220}\text{°}\)
Write the following in terms of a single trigonometric ratio:
\(\tan (\text{180}\text{°} - \theta) \times \sin (\text{180}\text{°} + \theta)\)
\(\dfrac{\tan (\text{180}\text{°} + \theta) \cos (\text{180}\text{°} - \theta)}{\sin (\text{180}\text{°} - \theta)}\)
If \(t = \tan \text{40}\text{°}\), express the following in terms of \(t\):
\(\tan \text{140}\text{°} + 3 \tan \text{220}\text{°}\)
\(\frac{\cos \text{220}\text{°}}{\sin \text{140}\text{°}}\)
Reduction formulae for function values of (360°±θ) and (−θ)
-
Function values of (360°−θ) and (−θ)
In the Cartesian plane we measure angles from the positive x-axis to the terminal arm, which means that an anti-clockwise rotation gives a positive angle. We can therefore measure negative angles by rotating in a clockwise direction.
For an acute angle θ, we know that −θ will lie in the fourth quadrant.
In the figure P(√3;1) and P′ lie on the circle with radius 2. OP makes an angle θ=30° with the x-axis.
-
If points P and P′ are symmetrical about the x-axis (y=0), determine the coordinates of P′.
-
Use the coordinates of P′ to determine sin(360°−θ), cos(360°−θ) and tan(360°−θ).
-
Use the coordinates of P′ to determine sin(−θ), cos(−θ) and tan(−θ).
-
From your results determine a relationship between the function values of (360°−θ) and −θ.
-
Complete the following reduction formulae:
- sin(360°−θ)=……
- cos(360°−θ)=……
- tan(360°−θ)=……
- sin(−θ)=……
- cos(−θ)=……
- tan(−θ)=……
-
-
Function values of 360°+θ
We can also have an angle that is larger than 360°. The angle completes a revolution of 360° and then continues to give an angle of θ.
Complete the following reduction formulae:
- sin(360°+θ)=……
- cos(360°+θ)=……
- tan(360°+θ)=……
From working with functions, we know that the graph of y=sinθ has a period of 360°. Therefore, one complete wave of a sine graph is the same as one complete revolution for sinθ in the Cartesian plane.

We can also have multiple revolutions. The periodicity of the trigonometric graphs shows this clearly. A complete sine or cosine curve is completed in 360°.

If k is any integer, then
sin(k⋅360°+θ)=sinθcos(k⋅360°+θ)=cosθtan(k⋅360°+θ)=tanθWorked example 8: Reduction formulae for function values of 360°±θ
If f=tan67°, express the following in terms of f
sin293°cos427°+tan(−67°)+tan1 147°
Using reduction formula
=sin293°cos427°+tan(−67°)+tan1 147°=sin(360°−67°)cos(360°+67°)−tan(67°)+tan(3(360°)+67°)=−sin67°cos67°−tan67°+tan67°=−tan67°=−fWorked example 9: Using reduction formula
Evaluate without using a calculator:
tan2210°−(1+cos120°)sin2405°
Simplify the expression using reduction formulae and special angles
tan2210°−(1+cos120°)sin2405°=tan2(180°+30°)−(1+cos(180°−60°))sin2(360°+45°)=tan230°−(1+(−cos60°))sin245°=(1√3)2−(1−12)(1√2)2=13−(12)(12)=13−14=112Using reduction formula
Simplify the following:
Write the following in terms of \(\cos \beta\):
\(\dfrac{\cos (\text{360}\text{°} - \beta) \cos (-\beta) - 1}{\sin (\text{360}\text{°} + \beta) \tan (\text{360}\text{°} - \beta)}\)Simplify the following without using a calculator:
\(\dfrac{\cos \text{300}\text{°} \tan \text{150}\text{°} }{\sin \text{225}\text{°} \cos (-\text{45}\text{°})}\)
\(3 \tan \text{405}\text{°} + 2 \tan \text{330}\text{°} \cos \text{750}\text{°}\)
\(\dfrac{\cos \text{315}\text{°} \cos \text{405}\text{°} + \sin \text{45}\text{°} \sin \text{135}\text{°}}{\sin \text{750}\text{°}}\)
\(\tan\text{150}\text{°} \cos \text{390}\text{°} - 2 \sin \text{510}\text{°}\)
\(\dfrac{2 \sin \text{120}\text{°} + 3 \cos \text{765}\text{°} - 2 \sin \text{240}\text{°} - 3 \cos \text{45}\text{°}}{5 \sin \text{300}\text{°} + 3 \tan \text{225}\text{°} - 6 \cos \text{60}\text{°}}\)
Given \(\text{90}\text{°} < \alpha < \text{180}\text{°}\), use a sketch to help explain why:
\(\sin (-\alpha) = - \sin \alpha\)

\(\cos (-\alpha) = -\cos \alpha\)
If \(t = \sin \text{43}\text{°}\), express the following in terms of \(t\):
\(\sin \text{317}\text{°}\)
\(\cos^2 \text{403}\text{°}\)
\(\tan (-\text{43}\text{°})\)
Reduction formulae for function values of 90°±θ
In any right-angled triangle, the two acute angles are complements of each other, ˆA+ˆC=90°

Complete the following:
In △ABC
sinˆC=cb=cos…cosˆC=ab=sin…Complementary angles are positive acute angles that add up to 90°. For example 20° and 70° are complementary angles.
In the figure P(√3;1) and P′ lie on a circle with radius 2. OP makes an angle of θ=30° with the x-axis.

-
Function values of 90°−θ
-
If points P and P′ are symmetrical about the line y=x, determine the coordinates of P′.
-
Use the coordinates for P′ to determine sin(90°−θ) and cos(90°−θ).
-
From your results determine a relationship between the function values of (90°−θ) and θ.
-
-
Function values of 90°+θ
In the figure P(√3;1) and P′ lie on the circle with radius 2. OP makes an angle θ=30° with the x-axis.
-
If point P is rotated through 90° to get point P′, determine the coordinates of P′.
-
Use the coordinates for P′ to determine sin(90°+θ) and cos(90°+θ).
-
From your results determine a relationship between the function values of (90°+θ) and θ.
-
-
Complete the following reduction formulae:
- sin(90°−θ)=……
- cos(90°−θ)=……
- sin(90°+θ)=……
- cos(90°+θ)=……
Sine and cosine are known as co-functions. Two functions are called co-functions if f(A)=g(B) whenever A+B=90° (that is, A and B are complementary angles).
The function value of an angle is equal to the co-function of its complement.
Thus for sine and cosine we have
sin(90°−θ)=cosθcos(90°−θ)=sinθThe sine and cosine graphs illustrate this clearly: the two graphs are identical except that they have a 90° phase difference.

Worked example 10: Using the co-function rule
Write each of the following in terms of sin40°:
- cos50°
- sin320°
- cos230°
- cos130°
- cos50°=sin(90°−50°)=sin40°
- sin320°=sin(360°−40°)=−sin40°
- cos230°=cos(180°+50°)=−cos50°=−cos(90°−40°)=−sin40°
- cos130°=cos(90°+40°)=−sin40°
Function values of θ−90°
We can write sin(θ−90°) as
sin(θ−90°)=sin[−(90°−θ)]=−sin(90°−θ)=−cosθsimilarly, we can show that cos(θ−90°)=sinθ
Therefore, sin(θ−90°)=−cosθ and cos(θ−90°)=sinθ.
Worked example 11: Co-functions
Express the following in terms of t if t=sinθ:
cos(θ−90°)cos(720°+θ)tan(θ−360°)sin2(θ+360°)cos(θ+90°)
Simplify the expression using reduction formulae and co-functions
Use the CAST diagram to check in which quadrants the trigonometric ratios are positive and negative.
cos(θ−90°)cos(720°+θ)tan(θ−360°)sin2(θ+360°)cos(θ+90°)=cos[−(90°−θ)]cos[2(360°)+θ]tan[−(360°−θ)]sin2(360°+θ)cos(90°+θ)=sinθcosθtanθsin2θ(−sinθ)=−cosθ(sinθcosθ)sin2θ=−1sinθ=−1tCo-functions
Simplify the following:
\(\dfrac{\cos(\text{90}\text{°} + \theta) \sin (\theta + \text{90}\text{°})}{\sin (-\theta)}\)
\(\dfrac{2\sin(\text{90}\text{°} - x) + \sin (\text{90}\text{°} + x)}{\sin (\text{90}\text{°} - x) + \cos(\text{180}\text{°} + x)}\)
Given \(\cos \text{36}\text{°} = p\), express the following in terms on \(p\):
\(\sin \text{54}\text{°}\)
\(\sin \text{36}\text{°}\)
\(\tan \text{126}\text{°}\)
\(\cos \text{324}\text{°}\)
Reduction formulae and co-functions:
-
The reduction formulae hold for any angle θ. For convenience, we assume θ is an acute angle (0°<θ<90°).
-
When determining function values of (180°±θ), (360°±θ) and (−θ) the function does not change.
-
When determining function values of (90°±θ) and (θ±90°) the function changes to its co-function.
second quadrant (180°−θ) or (90°+θ) | first quadrant (θ) or (90°−θ) |
sin(180°−θ)=+sinθ | all trig functions are positive |
cos(180°−θ)=−cosθ | sin(360°+θ)=sinθ |
tan(180°−θ)=−tanθ | cos(360°+θ)=cosθ |
sin(90°+θ)=+cosθ | tan(360°+θ)=tanθ |
cos(90°+θ)=−sinθ | sin(90°−θ)=cosθ |
cos(90°−θ)=sinθ | |
third quadrant (180°+θ) | fourth quadrant (360°−θ) |
sin(180°+θ)=−sinθ | sin(360°−θ)=−sinθ |
cos(180°+θ)=−cosθ | cos(360°−θ)=+cosθ |
tan(180°+θ)=+tanθ | tan(360°−θ)=−tanθ |
Reduction formulae
Write \(A\) and \(B\) as a single trigonometric ratio:
\(A = \sin(\text{360}\text{°} - \theta) \cos (\text{180}\text{°} - \theta) \tan(\text{360}\text{°} + \theta)\)
\(B = \dfrac{\cos (\text{360}\text{°} + \theta) \cos(-\theta) \sin (-\theta)}{\cos (\text{90}\text{°} + \theta)}\)
Hence, determine:
\(A + B = \ldots\)
\(\frac{A}{B} = \ldots\)
Write the following as a function of an acute angle:
\(\sin \text{163}\text{°}\)
\(\cos \text{327}\text{°}\)
\(\tan \text{248}\text{°}\)
\(\cos (-\text{213}\text{°})\)
Determine the value of the following, without using a calculator:
\(\dfrac{\sin(-\text{30}\text{°})}{\tan(\text{150}\text{°})} + \cos \text{330}\text{°}\)
\(\tan \text{300}\text{°} \cos \text{120}\text{°}\)
\((1 - \cos \text{30}\text{°})(1 - \cos \text{210}\text{°})\)
\(\cos \text{780}\text{°} - (\sin \text{315}\text{°})(\cos \text{405}\text{°})\)
Prove that the following identity is true and state any restrictions:
\(\dfrac{\sin(\text{180}\text{°} + \alpha) \tan(\text{360}\text{°} + \alpha) \cos \alpha}{\cos(\text{90}\text{°} - \alpha)} = \sin \alpha\)
Previous
6.2 Trigonometric identities
|
Table of Contents |
Next
6.4 Trigonometric equations
|